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A comprehensive numerical and experimental study of normal shock waves in
hypersonic axisymmetric jets of N2 is presented. The numerical interpretation is
based on the quasi-gasdynamic (QGD) approach, and its generalization (QGDR) for
the breakdown of rotational–translational equilibrium. The experimental part, based
on diagnostics by high-sensitivity Raman spectroscopy, provides absolute density and
rotational temperatures along the expansion axis, including the wake beyond the
shock. These quantities are used as a reference for the numerical work. The limits
of applicability of the QGD approach in terms of the local Knudsen number, the
influence of the computational grid on the numerical solution, the breakdown of
rotation–translation equilibrium, and the possible formation of a recirculation vortex
immediately downstream from the normal shock wave are the main topics considered.

1. Introduction
Shock waves associated with the two-dimensional axisymmetric expansion of a

gas show, more or less modified, many of the well-known peculiarities of the one-
dimensional expansion, for instance the sharp density and temperature gradients
across the normal shock wave, the breakdown of the thermodynamic equilibrium
between translation and rotation degrees of freedom, the lag between the profiles of
density, translational temperature and rotational temperature, the thermal overshoot
at the end of the shock wave, and the bimodal distribution of temperatures across it.
In addition, a characteristic of two-dimensional axisymmetric supersonic expansions
seems to be a recirculation vortex associated with the normal shock wave, which
has been mentioned incidentally in several recent works (Chen, Chakravorty & Hung
1994; Stenholm & Jover 1997; Welsh 1997; Gribben et al. 1998; Frey & Hagemann
1998; Maté et al. 2001). Somewhat more systematic numerical studies of the vortex
problem have been acomplished in the framework of the Euler equations by Goryainov
(2000), and of the quasi-gasdynamic equations by Graur et al. (2002b).

In the last decade, the quasi-gasdynamic (QGD) system of equations, and their
generalization (QGDR) for the breakdown of the translational–rotational equilibrium,
have been employed to calculate flow properties of several gasdynamic systems
(Elizarova et al. 1995, 1997; Elizarova & Chirokov 1999; Elizarova, Graur & Lengrand
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2001; Graur, Elizarova & Lengrand 1997, 1999; Graur et al. 2002b; Lengrand et al.
1995). These equations constitute a promising gasdynamic approach beyond the
Navier–Stokes equations. However, the lack of quantitative experimental data to
compare with has left open a number of relevant questions about the limits of
applicability of the QGD approach in highly demanding computational problems like
the two-dimensional shock waves. Among them, a major one is to what extent several
‘difficult’ flow fields can be calculated accurately with the same method.

In this paper we present a comprehensive numerical and experimental study of
the two-dimensional problem of the shock wave and associated vortex formation in
axisymmetric jets of N2. The experimental part concerns the properties of five normal
shock waves in axisymmetric expansions of N2 generated under different stagnation-
to-background pressure ratios. These ratios were chosen to produce normal shock
waves differing considerably in their properties, spanning a range of Mach numbers
7.7 <M < 15.3, reaching maximum values of local Knudsen numbers 0.33 <Kn< 0.59
within the shock wave. The absolute density profiles and the rotational temperature
profiles of these five shock waves have been measured with unprecedented accuracy
and spatial resolution by means of high-sensitivity Raman spectroscopy using the
miniature jet diagnostic facility at the Instituto de Estructura de la Materia (Montero
et al. 2000, Ramos et al. 2000).

The numerical interpretation is based on the QGD approach, and on its
QGDR generalization for the breakdown of the translational–rotational equilibrium,
particularly severe at the shock wave. The experimental material, rich in density–
temperature features, provides a firm basis to test the capability of QGD and QGDR
modelling of shock waves which are in the continuum limit by virtue of their large
local Knudsen numbers. In particular, the present flow fields are characterized by the
following difficulties: (a) a wide range of local Knudsen numbers, with experimental
values in the range Kn< 0.59; (b) gasdynamic quantities (pressure, temperature, flow
velocity) varying by several orders of magnitude, with strong local gradients; and
(c) high rarefaction, and severe breakdown of rotational–translational equilibrium
in some local regions. Such high values of the local Knudsen number imply a
limit to the continuum models associated with the breakdown of the Maxwellian
distribution, while the breakdown of translational–rotational equilibrium poses the
problem of the rotational distribution function. In QGD and QGDR approaches this
distribution function is based on a continuous distribution of rotational energy, while
the molecular rotational quantum energies are of discrete nature, markedly departing
from a continuum at the low local temperatures reached at the onset of the present
shock waves, on the order of 10 K.

Testing different computational variants under these limit conditions, with emphasis
on the topics enumerated above, is the main target of the present work. Another
question that has received our attention is the formation of vortices beyond the
shock waves, akin to those described in the recent literature. The merits of the
QGDR generalization, compared with the plain QGD approach, and the use of
multiprocessor systems in connection with very fine computational grids are also
treated in some detail.

The paper is structured as follows. In § 2, the theoretical background of the QGD
and QGDR equations is presented, with emphasis in the differences with the Navier–
Stokes equations. The experimental aspects of the shock waves studied are described
in § 3. Computational and numerical treatment of the QGD and QGDR equations
is given in § 4. A discussion of the density, temperature, and velocity profiles of
the five shock waves, calculated with different approximations, is presented in § 5,
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including comparison with experiment where possible. The numerical results and the
vortex problem are discussed in § 6. Finally, the conclusions are summarized in § 7.
Appendices A and B include details of the QGD equations adapted to axial symmetry,
and its vectorial representation for numerical calculations.

2. Theory
2.1. The QGD and QGDR equations

The quasi-gasdynamic (QGD) equations, originally developed by Elizarova &
Chetverushkin (1984, 1988) on the basis of a kinetical model of the distribution
function, are reputed to produce robust numerical algorithms suited for the calculation
of viscous supersonic flows. For the stationary case, the Navier–Stokes (NS) equations
are the asymptotic limit of the QGD equations when the Maxwellian relaxation time
τ tends to zero. This property can easily be deduced from the formulation of the
QGD equations presented below.

In the domain of small Knudsen numbers where the NS equations are accepted
to be valid, the QGD equations do not distort the NS solution but just stabilize
the numerical algorithm. In this case, QGD, NS, and direct simulation Monte Carlo
(DSMC) results, tend to coincide as has been shown by Elizarova et al. (1995, 1997),
and are in good general agreement with the experimental results (Graur et al. 2003).
For larger Knudsen numbers, QGD results have proved to be superior to NS results,
compared with experiment in microchanneles (Elizarova & Sheretov 2002). QGD
calculations, though less accurate than DSMC calculations, are considerably cheaper
from the computational point of view, and appear to be better suited for problems
where the gasdynamic properties span a range of several orders of magnitude, like in
the jets and shock waves studied in the present work.

Gasdynamic structures may be described by a system of three differential equations
accounting for
conservation of mass (continuity equation)

∂ρ

∂t
+ ∇iJ

i = 0, (1)

momentum

∂(ρuk)

∂t
+ ∇iJ

iuk + ∇kp = ∇iΠ
ik, (2)

and total energy

∂E

∂t
+ ∇i

J i

ρ
(E + p) + ∇iq

i = ∇i(Π
ikuk), (3)

where the macroscopic flow quantities are ρ (density), ui (velocity coordinates), p

(pressure), and E (total energy per unit volume).
Different choices for the mass flux vector J i , the shear-stress tensor Πik , and the

heat flux vector qi , lead either to the NS equations, or to the QGD equations used
below (Sheretov 1997, 2000). The Navier–Stokes equations are derived from

J i = J i
NS = ρui, (4)

Πik = Πik
NS =µ[∇kui + ∇iuk − (2/3)gik∇ju

j ] + ζgik∇ju
j , (5)

qi = qi
NS = −κ∇iT , (6)
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where µ is the viscosity, gik is the metric tensor, ζ is the bulk viscosity, and κ = cpµ/Pr
is the heat conductivity; Pr is Prandtl number, and γ = cp/cv the ratio of heat
capacities; ζ has been taken as ζ = µ(5/3 − γ ) according to Elizarova & Chirokov
(1999). The gasdynamic variables ρ, ui , and p involved are instantaneous space-
averaged quantities. In contrast to the Navier–Stokes equations, if the gasdynamic
quantities ρ, ui , and p are defined by means of time–space averaging (instead of space
averaging), the system (1)–(3) can be closed in the QGD approach by

J i = J i
NS + J i

D, J i
D = −τ [∇j (ρuiuj ) + ∇ip], (7)

Πik = Πik
NS + Πik

D , Πik
D = τui[ρuj ∇ju

k + ∇kp] + τgik[uj ∇jp + γp∇ju
j ], (8)

qi = qi
NS + qi

D, qi
D = −τρui[uj ∇j ε + puj ∇j (1/ρ)], (9)

where τ =µ/p is the averaging time, chosen to be equal to the Maxwellian relaxation
time, and ε =p/(ρ(γ − 1)); ( )D stands for the dissipative terms additional to the
Navier–Stokes contributions referred to as ( )NS (Sheretov 1997, 2000).

The QGDR equations were developed by Elizarova & Chirokov (1999) as a
generalization of the QGD equations. The QGDR equations for a gas with three
translational and two rotational degrees of freedom, with γ =7/5, are intended
to account for the non-equilibrium Ttr �= Trot between translational and rotational
temperatures. The QGDR equations can be written like the QGD ones, with equations
(1) and (2) retaining their form, while in (7) and (8) p is replaced by ptr, and
τ by τtr = µ/ptr, with the viscosity µ = µ(Ttr) only depending on the translational
temperature. In turn, the energy equation (3) is split in the QGDR generalization into
one equation for the translational energy Etr per unit volume,

∂Etr

∂t
+ ∇i

J i

ρ
(Etr + ptr) + ∇iq

i
tr = ∇i(Π

ikuk) + Str, (10)

and another equation for the rotational energy Erot per unit volume,

∂Erot

∂t
+ ∇iu

iErot + ∇iq
i
rot = ∇iτ∇ju

iujErot + ∇iτ
prot

ρ
∇iptr + Srot, (11)

with

Etr =
ρ(ui)2

2
+

ptr

γ − 1
, Erot =prot, (12)

and Str and Srot the energy exchange terms defined below.
The total heat flux qi is also split into the partial contributions

qi
tr = − 1

Pr

5

2
µ∇i ptr

ρ
− τρui[uj ∇j ε + ptruj ∇j (1/ρ)], (13)

where ε = ptr/(ρ(γ − 1)), responsible for the heat conduction due to the gradient of
translational temperature Ttr , and

qi
rot = − 1

Pr
µ∇i prot

ρ
, (14)

for the heat conduction due to the gradient of rotational temperature Trot. Note
that in the QGDR model both heat flux vectors, qtr and qrot in (13) and (14), are
proportional to µ(Ttr). The viscosity has been treated within the variable hard sphere
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(VHS) model, which leads to a thermal dependence

µ = µref

(
T

Tref

)ω

. (15)

The VHS molecular diameter of N2 employed in the present calculations is dref =

d(Tref) = 4.17×10−10 m, while µref = µ(Tref) = 1.656×10−5 N s m−2 at Tref =273 K, and
ω =0.74 (Bird 1994).

The energy exchange terms

Str = −Srot =
3

5τrot

(prot − ptr), (16)

in (10) and (11) involve the rotational relaxation time τrot. Here it has been estimated
as τrot = Zτc, where τc = τ (7 − 2ω)(5 − 2ω)/30 is the mean collisional time, and

Z =
Z∞

1 +
(
π3/2/2

)
(T 
/Ttr)1/2 + (π + π2/4)(T 
/Ttr)

, (17)

the so-called rotational collision number (Parker 1959); for N2, the parameters
Z∞ = 23, and T 
 = 91.5 K, have been taken from Bird (1994).

Average pressure pav and temperature Tav derived from the QGDR generalization,
to be compared to the homologous QGD quantities p and T , are defined by

pav = (3 ptr + 2 prot)/5 = ρ (R/M) Tav, (18)

where R = 8.31451 JK−1 mol−1 is the universal gas constant, and M the molar mass
of N2. At thermal equilibrium ptr = prot = pav =p, resulting

E = Etr + Erot =
ρu2

i

2
+

p

γ − 1
, (19)

for the total energy per unit volume, the QGDR system becoming a single-temperature
QGD system with perfect-gas specific heat ratio γ =7/5 and Prandtl number
Pr = 14/19.

The QGD equations in r, z coordinates adapted to the axial symmetry of the
present problem are given explicitly in Appendix A. In the present formulation the
NS-dissipative terms, ( )NS ∝ µ, (equations (A 7), Appendix A), and the additional
dissipative terms, ( )D ∝ τ , (equations (A 5), (A 6), (A 8), Appendix A) are written
separately. For stationary flows the terms in τ have asymptotic order of O(τ 2) for
τ → 0 or, in the dimensionless form O(Kn2) (Sheretov 2000).

3. Experimental
Recent progress in instrumentation for high-sensitivity Raman spectroscopy,

combined with the design and implementation of suitable expansion chambers, has
provided a powerful diagnostic tool for the quantitative investigation of supersonic
jets and associated phenomena (Montero et al. 2000, 2002; Ramos et al. 2000; Maté
et al. 2001).

Using the facility at the Instituto de Estructura de la Materia (CSIC), the density
and rotational temperature profiles of five axisymmetric expansions of N2 and their
normal shock waves, including downstream wakes, have been investigated with high
accuracy and spatial resolution. These expansions were generated through a circular
nozzle of exit radius re = 0.1565 mm and internal length ≈1 mm, at room temperature
T0 = 295 K, and fixed nominal stagnation pressure of ≈1 bar. Due to the miniature
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size of the facility, this reference pressure was measured with a pressure transducer
connected with the nozzle prechamber by a long and narrow duct. Thus it is just an
orientative nominal pressure reference. The actual pressure in the nozzle prechamber,
P0 = 732 mbar (±10%), was determined by spectroscopic measurement of the absolute
number density at different points of the expansion, some of them very close to the
nozzle, extrapolating the fitted function to the nozzle origin located about one nozzle
radius inside the nozzle channel (Ramos 2001).

For the conditions mentioned above the expansions are free from any detectable
condensation. The five shock waves, henceforth denoted by A, B, C, D, and E, were
formed at distances from the nozzle L = 2.7, 6.1, 8.5, 11.6, and 15.2 mm by setting the
residual pressure in the expansion chamber to P∞ =4.2, 1.0, 0.5, 0.28, and 0.18 mbar,
respectively, by means of an inlet needle valve, always maintaining the same nozzle
prechamber pressure of P0 = 732 mbar.

Referred to the critical conditions at the nozzle exit (Mach number M = 1) the
Reynolds number Ree = 2reff

e ueρe/µe of the investigated expansions is Ree ≈ 3200. The
flow regime in the mixing layer at the beginning of the expansions can be characterized
by a Reynolds number referred to the distance L between nozzle and Mach disk,
defined as ReL = Ree/

√
P0/P∞ (Volchkov et al. 1973; Novopashin & Perepelkin 1989):

for ReL > 104 the flow is turbulent, the range 103 <ReL < 104 corresponds to the
laminar–turbulent transition, for 102 <ReL < 103 the flow is laminar, and in flows
with ReL < 102 the effects of rarefaction influence the gasdynamic structure. For
expansions A to E respectively ReL =243, 119, 84, 63, and 50, meaning that the
flow in expansions A and B is laminar, while in expansions C, D, and E there is
increasingly rarefied flow where the gasdynamic structure may be expected to be
progressively influenced.

With aid of the expression for the discharge coefficient CD in terms of Ree (Benedict
1966; Sreekanth, Prasad & Prasad 1991) we obtain for the present experiments a
discharge coefficient CD ≈ 0.90. As shown below, this departure from ideal isentropic
conditions is consistent with a reduction of the nozzle radius from its nominal value
re = 0.1565 mm to an effective radius reff

e ≈ 0.148 mm. These facts, indicative of the
departure from the ideal source conditions, may add some degree of quantitative
uncertainty to the comparison between numerical and experimental results, but are
not sufficiently important to affect seriously the general conclusions on the structure
and quantitative properties of the fairly different shock waves and wakes investigated
here.

As a guide for the forthcoming dicussion a QGD numerical schlieren picture of the
global structure of expansion B is depicted in figure 1(a) showing the representative
zones of the flow field, which are common to the five expansions A to E, but differ
quantitatively. Immediately downstream from the nozzle is the zone of silence, the
supersonic core where the velocity flow field is nearly radial, with rapid decreasing
density and temperature, and increase of flow velocity approaching its asymptotic
(terminal) value, followed by the normal shock wave, of width δ, where the flow field is
sharply deflected outwards from the symmetry axis, with strong decreasing of the flow
velocity. The normal shock wave is characterized by a sharp increase of density and
temperature across it, and by a marked breakdown of the translational–rotational
thermal equilibrium. The final section of the normal shock wave merges with a
rethermalized zone of slow subsonic flow velocity. According to some computational
results a toroidal trapped vortex, displaying negative axial flow velocity, is formed
there. This is indeed a controversial region because of the extremely slow flow velocity,
hardly amenable to unambiguous experimental conclusions. Beyond this region the
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Figure 1. Expansion B: (a) QGD numerical schlieren picture of expansion B, variant s10,
(b) and the computational domain.

flow field is nearly sonic and tends to collimate parallel to the symmetry axis. The zone
of silence, normal shock wave, and supposed vortex are confined by the barrel shock,
almost rethermalized and of comparatively high density, with slightly supersonic flow
velocity. Outside the barrel shock, close to it the flow is slow and probably turbulent,
while at distance large enough the gas may be considered at rest at the background
pressure p∞. A thorough description of the general properties of free jets has been
given by Volchkov et al. (1973), and by Rebrov (1985), while a quantitative mapping
of a real free jet of CO2 has been reported by Maté et al. (2001).

The region experimentally investigated here in detail is the axial path of figure 1(a).
The two-dimensional QGD and QGDR calculations span a computational domain,
shown in figure 1(b), large enough to include the complete structure of the jet in all
five cases A to E.

The experimental spatial resolution at the datapoints probed along the axis of
the expansion of figure 1 amounts about 10 µm, equivalent to 0.0638 nozzle radius.
This value is far smaller than the experimentally determined widths of the shock
waves, δA =0.606, δB = 2.556, δC = 4.920, δD = 6.912, and δE = 10.480 also expressed
in units of the nozzle radius re, and allows the determination of truly local properties
even under strong gradient conditions. In terms of mean free path, more meaningful
from the physical point of view, the five shock waves display a remarkably constant
thickness, with avearage value δ = (4.37 ± 0.38)λ1; δ is defined here according to Bird
(1994), and λ1 is the mean free path at the minimum density point upstream of each
shock wave (Ramos et al. 2000).
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Computational Grid z-step r-step Domain
variant Nz × Nr hz/re hr/re size (mm)

s1 140 × 92cv 1 0.1 21.91 × 15.65
s2 281 × 92cv 0.5 0.1 21.91 × 15.65
s3 561 × 92cv 0.25 0.1 21.91 × 15.65
s4 1401 × 1001u 0.1 0.1 21.91 × 15.65
s5 34 × 60cv 1 0.1 5.32 × 3.14
s6 137 × 201u 0.25 0.1 5.32 × 3.14
s7 171 × 201u 0.2 0.1 5.32 × 3.14
s8 340 × 201u 0.1 0.1 5.32 × 3.14
s9 76 × 74cv 1 0.1 11.73 × 7.84
s10 751 × 501u 0.1 0.1 11.73 × 7.84

Table 1. Computational variants used in the present work; u denotes uniform grids and cv
constant-variable grids.

The experimental density and rotational temperature profiles of shock waves A, B,
C, D, and E, are discussed below, jointly with their QGD or QGDR calculated
counterparts under different computational conditions. More details about the
procedure for measuring of densities and rotational temperatures in the jet, as well
as other features of these shock waves have been reported by Ramos et al. (2000).

4. Numerical details
The computational domain of figure 1(b) is covered by a rectangular grid with radial

steps hr , and axial steps hz. Since the choice of grid and the size of the domain have a
determining influence on specific features of the calculated flow fields, in particular on
the supposed vortex beyond the normal shock waves, several computational variants,
listed in table 1, have been tested.

Two sorts of grids were used, namely (i) uniform grids marked u in table 1 where
the step in the axial (z) and radial (r) directions remains constant, and (ii) constant-
variable grids marked cv in table 1 where the step size remains constant along the
axial direction, while for the radial direction it remains constant for r < re, but for
r > re the step increases progressively between adjacent cells with a stretching factor
1.05.

The numerical computation of the QGD and QGDR equations for expansions A
to E has been carried out according to a finite-difference scheme where the spatial
derivatives are approximated with the centred derivatives (centred scheme). Under
high Mach numbers the numerical solution of the QGD and QGDR systems may
lead to oscillations in regions with strong gradients in the dynamical variables. To
overcome this numerical problem the relaxation time τ is replaced in the dissipative
terms, except in those with mixed spatial derivatives, by

τ = µ/p + τeff, with τeff =
h

c
β, (20)

where c is the velocity of sound; the damping parameter β , usually in the range
0.1 <β < 0.5, is given the smallest value that ensures the stability of the solution. This
makes the order of the space accuracy of the resulting numerical algorithm equal to
O(βh). (See Appendix B for the details.)
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Me 1.01 Kne 1.09 × 10−4

Te 249.2 K λ̃e = λe/(2re) 3.75 × 10−4

pe 0.382 bar T∞/Te 200/249.2
ne 1.1114 × 1025 m−3 p∞/pe (A) 0.0110
ρe 0.517 kg m−3 (B) 0.00262
ue 325.0 m s−1 (C) 0.00131
µe 15.47 × 10−6 s Pa (D) 0.000732
λe 11.73 × 10−8 m (E) 0.000471

Table 2. Nozzle exit quantities of the N2 jets employed in the QGD and QGDR numerical
calculations; Kne = (λe/ne)(dn/dz)e .

The system of finite-difference equations associated with the QGD and QGDR
equations is solved here by means of an explicit algorithm where the steady-state
solution is attained as the limit of a time-evolving process. The computation finishes
when the steady-state solution is reached according to the criterion

1

NrNz

∑ ∣∣∣∣ρj+1 − ρj

ρj
t̃

∣∣∣∣ � ε, (21)

where the sum is over all computational nodes in the grid; ρ is the density, j the
time-step index, Nr , Nz the number of nodes in the r- and z-directions respectively,
and 
t̃ the dimensionless time step defined as 
t̃ = (ce/λe)
t , where λe is the mean
free path at the nozzle exit. Here 
t is chosen according to the stability criterion

t = 0.005 min(h/c). Representative time steps and the number of iterations required
for a stationary solution in a QGDR calculation of shock waves A to E (variant s2)
are: ε ≈ 10−8, Niter ≈ 5 × 106, and 
t̃ = 2.40, 0.477, 0.240, 0.242, and 0.121, for shock
waves A, B, C, D, and E, respectively.

4.1. Parallel implementation

The numerical problem of shock wave calculations considered here is very time
consuming and requires a powerful computational system. We employed a cluster
computer system consisting of up to 300 processors with distributed memory equipped
either with Intel Pentium III, or with Alpha 21264 microprocessors. The Message
Passing Interface (MPI) standard was used for the organization of interprocessor data
exchange. The parallel code is geometrical-parallelism based, according to the domain
decomposition technique. This means that the whole computational domain is divided
into subdomains in the z-direction, with each processor providing the calculations in
its own subdomain. The number of subdomains is equal to the number of processors
used. Efficiency estimations show that the implemented numerical algorithm, explicit
in time and homogeneous in space allows the efficient use of the cluster multiprocessor
systems (Graur et al. 2002a).

4.2. Flow and boundary conditions

The QGD and QGDR numerical calculations were carried out under flow conditions
suited for comparison with the experimental results. The nozzle exit quantities, some of
which are required for the calculation, are reported in table 2. They have been obtained
from the source conditions of the experiment assuming an isentropic approximation
with Mae = ue/ae = 1.01 at the exit of the nozzle. The ratio of background to nozzle
exit pressures of the five shock waves investigated are marked (A) to (E) in table 2.
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A representative two-dimensional computational domain is shown in figure 1. The
PQ, QR, RS, and SN, boundary conditions for the QGD and QGDR equations are
as follows:
PQ (nozzle wall boundary)

uz = 0,
∂ur

∂z
= 0,

∂p

∂z
= 0,

∂T

∂z
= 0, (22)

QR (radial undisturbed boundary)

∂uz

∂r
=0, ur = 0, p =p∞, T = T∞, (23)

RS (downstream boundary)

∂uz

∂z
= 0,

∂ur

∂z
=0,

∂p

∂z
=0,

∂T

∂z
= 0, (24)

SN (symmetry axis boundary)

∂uz

∂r
= 0, ur =0,

∂p

∂r
=0,

∂T

∂r
= 0. (25)

4.3. Schlieren pictures

The global representation of the two-dimensional problem discussed next has been
generated by means of a numerical schlieren picture. According to Liepmann &
Roshko (1957) either ∂ρ/∂r or ∂ρ/∂z can be visualized in experimental schlieren
pictures depending on the knife position, vertical or horizontal, respectively. For
numerical visualization both possibilities can be used but, in accordance with our
experience, the quantity best suited for a faithful picture is based on the absolute
value of the gradient

|∇ρ| =

√(
∂ρ

∂z

)2

+

(
∂ρ

∂r

)2

. (26)

In order to expose even weak density non-uniformities, a nonlinear scale has been
utilized as proposed by Quirk (1994, 1998). A schlieren picture corresponding to the
flow field of expansion B is shown in figure 1. It depicts the quantity

S(z, r) =C exp

(
−K

|∇ρ| − |∇ρ|min

|∇ρ|max − |∇ρ|min

)
, (27)

where the subscripts min and max denote the minimum and maximum values of the
density gradient over the whole flow field; C and K are two tunable parameters.
The parameter C determines the shade of grey that corresponds to the zero gradient,
while K governs the amplification of small gradients. We have used C = 0.8, and K

between 10 and 15.

5. Density, temperature, and velocity profiles of shock waves A, B, C, D, and E
The density, rotational temperature, and velocity, profiles of axisymmetric

supersonic expansions and associated shock waves are characterized by a number
of reference points, depicted schematically in figure 2 for a generic expansion. These
points are located along the symmetry axis of the expansion.

Reference point 1, of abscissa z1, in figure 2(a) corresponds to the minimum
of density, n1, in the zone of silence of the expansion. Point 2 corresponds to a
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Figure 2. Reference points in a generic axisymmetric supersonic expansion; (a) densities,
(b) rotational temperatures, and (c) velocities.
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A B C D E

z1 QGDR 2.50 4.70 6.50 8.53 10.64
Exptl 2.55 5.3 7.5 10.0 13.0

n1 QGDR 21.46 4.84 2.27 1.18 0.70
Exptl 30.6 6.3 3.3 1.8 0.93

L (Mach disk) QGDa 2.58 4.93 7.75 9.16 13.79
QGDRa 2.74 5.24 7.90 10.80 13.93
Exptla 2.7 6.1 8.5 11.6 15.25

zmin Ashk.b 2.62 5.37 7.59 10.14 12.65

λ̃max QGDR 0.16 0.74 1.57 2.96 4.86

z(λ̃max) QGDR 2.58 4.85 6.81 8.92 11.19
Knmax Exptl 0.33 0.35 0.42 0.54 0.59
z(Knmax) Exptl 2.68 6.0 8.3 11.3 14.8
Knmax QGDR 0.62 0.87 1.06 1.40 1.79
z(Knmax) QGDR 2.66 5.09 7.28 9.70 12.36

a from maximum density gradient, b from equation (28) according to Ashkenas & Sherman (1964),

employing the effective nozzle radius r
eff
e = 0.148 mm.

Table 3. Numerical results on shock waves A, B, C, D, and E for computational variant s2,
and comparison with experiment; z and L are distances downstream from the nozzle, in mm;
n1 is the minimum absolute number density on the axis, in units of 1021 m−3; λ̃= λ/(2re) is
the normalized mean free path, and Kn = (λ/n)(dn/dz) the local Knudsen number.

discontinuity in the slope of the density. To experimental accuracy, this discontinuity
coincides with the highest rethermalization of the rotational temperature, about
20% above the nozzle exit temperature, Te, as shown in figure 2(b). Along the
expansion the first experimental evidence of the onset of the normal shock wave is the
rethermalization, which starts upstream from point 1, of minimum density, shown in
figure 2(b). This agrees with the predictions of Rebrov & Chekmarev (1971) for a
spherically expanding flow, a good model for the paraxial region of the present ex-
pansions up to point 2. Point 2 may be considered the end of the actual shock wave.

Between points 1 and 2, the abscissa L of largest slope in the density profile of
figure 2(a) coincides with the sonic condition M = 1. Customarily this point is referred
to as the location of the Mach disk.

According to Ashkenas & Sherman (1964) the abscissa of minimum pressure
upstream from the shock wave is given by

zmin =1.34re(p0/p∞)1/2, (28)

where re is the radius of the nozzle, p0 the stagnation pressure in the nozzle
prechamber, and p∞ the background pressure in the expansion chamber. The abscissa
of point 1, z1, its absolute number density, n1, the location L of the Mach disk,
and other relevant flow parameters of cases A to E are given in table 3, from the
experiment, and computational variant s2. It should be noted that the abscissa of
lowest pressure, zmin, from (28), is indeed very close to the experimental point 1 of
lowest number density, but progressively departs from the true position of the Mach
disk on going from shock A to shock E.

For all grids of table 1 QGDR results are somewhat closer to the experimental
values. QGD results slightly underestimate the position of the Mach disk compared
to QGDR results.
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The density jump across the shock, between points 1 and 2 of figure 2(a), is found
empirically to obey the relation

n2

n1

=

(
z1

z2

)2
(γ + 1)M2

2 + (γ − 1)M2
, (29)

where z1 and z2 are the axial distances from the nozzle to points 1, and 2, respectively,
and M is the Mach number at the onset of the normal shock. The experimental
values M ≈ 7.7, 10.6, 12.2, 13.6, and 15.3, at the onset of shocks A, B, C, D, and E,
respectively, have been estimated from the distance between the nozzle and the point
of lowest rotational temperature according to the empirical parameterization of M as
a function of z and γ proposed by Miller (1988). In the limit of infinitesimal width
(z2 = z1), equation (29) leads to the Rankine–Hugoniot density jump across an ideal
monodimensional shock wave. For increasingly larger widths of the real shock wave,
i.e. for increasing mean free path, the discontinuity in the gradient of density at point
2 tends to vanish. In shock wave E it is no longer recognizable, but its location can
be inferred approximately from the rethermalization of the rotational temperature.

Between points 2 and 3 the density gradient is positive, but smaller than at the
shock, and at point 3 the density reaches a local maximum. Downstream from point
3 mild secondary expansions are observed, with a quasi-periodical structure of density
maxima (points 3), and minima (points 4). As shown in figures 2(a) and 2(b), these
density maxima and minima are correlated with temperature maxima and minima,
but are anticorrelated with those of flow velocity (figure 2c).

The QGD and QGDR numerical simulation of these features shows an encouraging
qualitative agreement with experiment for all five shock waves investigated. To what
extent the simulation reaches a quantitative agreement very much depends on the
grid employed, on the size of computational domain, on the sort of approximation,
QGD versus QGDR, on the damping parameter β defined previously (equation (20)),
and on the rarefaction at the onset of the shock. The influence of these factors is
discussed next.

5.1. Shock wave A

The convergence of the QGD numerical solution with grid refinement is summarized
in figure 3 for variants s1 to s4 (see table 1). Density profiles improve beyond point 2
for finer grids, as shown in figure 3(a), and in more detail in figure 4, calculated with
the finest grid in a reduced computational domain. Altough variant s8 is still unable
to reproduce the slope beyond point 2, the density jump between points 1 and 2 is
predicted very accurately, as well as the slope between points 1 and 2. The Mach disk
location L is not very sensitive to grid nor to domain size. For the variants of table 1
this position is in the range 2.504 � L � 2.676 mm, on average 5% smaller than the
experimental value L(A) = 2.7mm.

Calculated temperature profiles shown in figure 3(b) slightly improve for finer grids
only in the region of lowest temperatures prior to the shock wave. Otherwise, the
calculated thermal profile of shock wave A is nearly insensitive to grid choice, at least
at the spatial resolution of the present experiments. In general QGD calculations
predict an average thermal profile which is in fairly good agreement with experiment,
as shown in figure 3(b). In particular the thermal overshoot at point 2 is well
reproduced. The sequence of maxima (points 3) and minima (points 4) for densities
and temperatures shown in figure 3(b) is also well reproduced regardless of grid.

QGD calculated axial velocities are depicted in figure 3(c). A recirculation vortex
characterized by negative axial velocities, located immediately downstream from
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Figure 3. Shock wave A: experimental and QGD calculated axial profiles of density
(a), temperature (b), and velocity (c), as a function of the grid; variants s1, s2, s3, and s4.

point 2, is obtained for cv grids in variants s1, s2, and s3, but not for the uniform
finest grid in variant s4. Though the QGD description of the density profile between
point 2 and the first point 3 is not good (gradient too large) it may be expected
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Figure 4. Shock wave A, detail: experimental and QGD calculated axial profiles of density
(a), and temperature (b); variants s5 and s8.

that variant s4, yielding the closest gradient to the experiment, would also predict
the velocity field best between 2 and 3. Indeed, in variant s4 the vortex disappears,
suggesting that the vortex resulting in shock wave A for grids s1, s2, and s3, is a
computational artifact with no physical reality.

The vortex also tends to vanish when the damping parameter is increased from
β = 0.1 to 0.5, but this is probably caused by a smoothing of the calculated gradients
of all quantities, including those of the velocity.

The differences between the QGD and the QGDR generalization are minor for
shock wave A, as shown in figure 5 for variant s2. The QGDR prediction of Mach
disk position, L =2.74 mm, is closer to the experimental value L = 2.7 mm, but the
sequence of maxima and minima, points 3 and 4, is not as good as for QGD
calculation. As far as the presumed vortex is concerned, QGD and QGDR numerical
results are similar.

5.2. Shock wave B

The convergence of QGD density profiles with grid refinement is shown in figure 6.
In particular the density gradient around point 2 is well reproduced by variant s3.
The thermal gradient is, however, less sensitive the to grid choice, as was the case
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Figure 5. Shock wave A: QGD and QGDR calculated axial profiles of density (a), and
rotational temperature (b); variant s2.

with shock wave A. Only a minor improvement is obtained with grid refinement. The
position of the Mach disk is underestimated by about 20%, although the trend is
towards an improvement with grid refinement. As was the case with shock wave A,
shock wave B also displays a recirculation vortex for variants s1, s2, and s3.

The effect of using a uniform grid in a smaller computational domain, variant s10,
is shown in figure 7. The density profile improves substantially between points 2 and
3, the region corresponding to the presumed vortex, but there is little change in the
thermal profile. The pressure gradient appears be well reproduced by the calculation
variant s10, so the small vortex in figure 7(c) between z ≈ 6 and 7 mm, with reversed
flow velocity uz ≈ −0.1 uze is obtained as a persistent numerical solution.

The QGDR generalization, even at the computational level of the coarse grid
of variant s2, yields a substantial improvement compared to QGD density and
temperature profiles, as shown in figure 8. The position of the Mach disk improves,
and QGDR density maxima and minima, points 3 and 4, are very well reproduced,
as are rotational temperatures above 150 K. The thermal onset of the shock wave,
below 100 K, is, however, poorly reproduced by any computational variant. The initial
section of the calculated thermal profile at the shock wave is far smoother than the
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Figure 6. Shock wave B: experimental and QGD calculated axial profiles of density
(a), temperature (b), and velocity (c), as a function of the grid; variants s1, s2, and s3.

experimental one. This mismatch is already evident in shock wave A, and worsens
considerably the more rarefied is the flow at the point 1 of the shock wave. QGDR
and QGD numerical behaviours of the vortex are similar.
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Figure 7. Shock wave B, detail: QGD calculated axial profiles of density (a), temperature
(b), and velocity (c); variants s9 and s10.

5.3. Shock waves C, D, and E

Numerical and experimental results concerning shock waves C, D, and E, are depicted
in figures 9 to 13. For these shock waves, with ReL < 100, the influence of the grid on
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Figure 8. Shock wave B: QGD and QGDR calculated axial profiles of density
(a), rotational temperature (b), and velocity (c); variant s2.

the QGD numerical results is of decreasing importance, as can be seen from figure 9
(shock wave C), and figure 11 (shock wave D). This is not surprising since the density
and temperature gradients tend to be smoother the lower the density at the onset of
the shock wave.
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Figure 9. Shock wave C: QGD calculated axial profiles of density (a), temperature (b), and
velocity (c), as a function of the grid; variants s2 and s3.

QGDR profiles are substantially closer to experiment than QGD profiles as shown
in figure 10 (shock wave C), figure 12 (shock wave D), and figure 13 (shock wave E).
This proves the superiority of QGDR over the plain QGD approach in these systems,



Shock waves in expanding flows 259

Figure 10. Shock wave C: QGD (primed numbers) and QGDR calculated axial profiles of
density (a), and rotational temperature (b); variant s2.

or regions, of the flow field where rotational–translational relaxation effects are far
from neglegible.

The numerical recirculation vortex appears for variants s2 and s3 in shocks C and
D, but for shock D it disappears for variant s10. For shock E no vortex is detectable
in the calculated flow field of velocities, but is obtained for the mass flux vector
field J i .

6. Discussion
The absolute number density along expansions A to E varies from ne = 1.1 ×

1025 m−3, at the nozzle exit, up to a minimum value n1 at point 1, three to four
orders of magnitude smaller than ne. A remarkable merit of the QGDR approach
is its capability of accounting for this wide range of absolute number densities with
fractional deviation


=

∣∣nQGDR
1 − n

exptl
1

∣∣
ne − n1

, (30)

well below 10−3 for all five expansions, according to the values given in table 3. In
figures 3 to 13 it is shown how the normalized density profiles of shock waves A to
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Figure 11. Shock wave D: experimental and QGD calculated axial profiles of density
(a), and temperature (b), as a function of the grid; variants s1, s2, s3, and s4.

E are reproduced by the various computational variants described in the previous
sections.

The systems studied here are associated with increasingly rarefied flows where the
maximum value, Knmax , of the local Knudsen number defined in the caption of table 3,
is reached in the initial section of the shock wave; Knmax progresively increases from
shock wave A to shock wave E, as shown in table 3. These high values of Knmax

are due to the large mean free path λ at the onset of the shock wave (λ, inversely
proportional to the number density, increases here by three to four orders of magnitude
from nozzle to shock wave), divided by a small density, and multiplied by the large
density gradient within the shock wave. This large variation of local Knudsen number
between nozzle and shock wave, together with its intrinsic high value inside the shock
wave, suggests that the present problem is in the limit of applicability of continuum
models like QGD and QGDR.

It may be argued however whether the poor description of the QGDR rotational
temperature profiles in the low-temperature section prior to the softer shock waves
(see figures 10b, 12b, and 13b) is caused by an inaccurate estimate of the viscosity
for T < 100 K. In order to check this point shock wave E, exhibiting the largest
local Knudsen number, has been recalculated in the QGDR approach using a
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Figure 12. Shock wave D: QGD and QGDR calculated axial profiles of density (a), and
rotational temperature (b); variant s2.

Sutherland-type viscosity law (Hirschfelder, Curtiss & Bird 1954) for nitrogen, where

µ = 1.374 × 10−6 T 3/2

T + 100
for T > 100 K, (31)

µ = 1.374 × 10−6 T

2
√

100
for T < 100 K. (32)

This viscosity law does indeed improve the lowest value of the rotational temperature
in case E by ≈30%, but does not improve significantly the too smooth nature of
the thermal onset of the shock wave. So we conclude that the too smooth calculated
thermal gradient at the onset of the shock waves is an intrinsic limitation of the
models based in the hypothesis of a continuum.

This limitation may be aggravated under conditions of severe breakdown of
rotational–translational equilibrium, as is the case within the present shock waves.
This is an unavoidable limitation of the QGD and QGDR models, and in general
of continuum models, where the rotational distribution function is based on the
hypothesis of continuous rotational energy, ignoring the discrete nature of rotational
quantum levels. The very low temperatures at the beginning of the present shock
waves preclude any reasonable averaging of the rotational distribution function.
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Figure 13. Shock wave E: experimental, QGD and QGDR calculated axial profiles of
density (a), and rotational temperature (b); variant s2.

The above problems may in part be overcome by the direct simulation Monte Carlo
method (DSMC). But in the particular problem treated here it brings additional
computational difficulties due to the large differences of geometrical features in cases
A to E, with very strong density and pressure gradients in the flow. This has been
shown by Teshima & Usami (2001), who had to employ different size cells and
different time-step schemes to treat a similar problem.

In spite of the specific discrepancies mentioned above the, overall agreement between
numerical and experimental profiles of density and rotational temperature confer on
the present results, specially the QGDR ones, a reasonable degree of credibility.
A striking feature of the calculated flow fields is the steady recirculation vortex,
trapped immediately downstream from the shock wave, which appears as a stable
numerical solution when using coarse grids (Graur et al. 2002b). These sorts of
solutions are summarized in figure 14 showing an overview of the velocity field. There
the nature of reference point 2 can be related to sudden changes in the orientation
of the velocity vector. Similar vortices have been described before in the literature,
but no experimental proof of their physical reality has been reported, as far as we
are aware. In the light of the present experimental and numerical results it is not
possible to confirm, or to deny, whether they are spurious numerical solutions or not.
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Figure 14. QGDR flow fields of N2 expansions A, B, C, D, and E, calculated with variant
s2; 2′ indicates the calculated position of reference point 2; D = 2re is the nozzle diameter.

In the experiment, the very slow velocity beyond the shock wave, with or without
recirculation, is too low to be detectable with the spectroscopic technique employed.
The present numerical solutions indicate, however, the tendency of the vortex to
vanish, in most cases but not always, when finer computational grids are used. Even
with the finest grid compatible with our computational hardware resources, the vortex
of shock wave B remains as a stable numerical solution. Only a substantial increase
of these resources can in principle remove this ambiguity by employing still finer
grids. In any case it is worth noticing the extreme computational sensibility of the
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velocity flow field that can be inferred from figure 14 in the vortex region. There the
orientation and magnitude of the velocity vector appears as an extremely sensitive test
for gasdynamical models and computational variants. Note however that the present
approach is restricted by r–z geometry, but the actual flow might be fully three-
dimensional, a possibility that should not be excluded a priori. The recirculation flow
behind the Mach disk might indeed be more complicated than a simple stationary
vortex with axial symmetry. Since in the present problem Ree ≈ 3200, at the nozzle
exit the flow might be spiraliform, or might even have a more complicated topology,
as is known to happen in flows behind obstacles, even for rather small Re (Shevelev
1986; Perry & Chong 1987; Mason & Sykes 1979; Shevelev & Klekovkin 2003).

7. Conclusions
The present work shows to what extent a gasdynamic problem with a wide range

of local Knudsen numbers can be treated within the framework of the QGD/QGDR
approach. The following conclusions can be drawn:

(i) The QGD equations, and specially their QGDR generalization, provide a
reasonable description of axial densities, and a somewhat less accurate description
of temperatures, in two-dimensional flow fields of supersonically expanding N2, with
measured local Knudsen number up to Kn< 0.6, approximately. These flow fields
include normal shock waves in the range of Mach numbers 7.7 <M < 15.3.

(ii) The less satisfactory feature of the QGD approach is the description of
the thermal evolution at the onset of the shock waves, the most rarefied region
of the flow field. This numerical description of temperatures is moderately good
in regions with experimental local Knudsen number Kn � 0.3. However, wherever
Kn ≈ 0.6 it worsens considerably. The QGDR generalization overcomes in part this
limitation but still predicts a too smooth profile for the rotational temperature at
the onset of the shock waves. Since the translational distribution function is free
from quantum effects, the translational temperatures may be expected to be better
described by the QGDR approach than the rotational temperatures, specially at
the lower end of the thermal scale. Unfortunately, this conjecture cannot be proved
from the present experiment since translational temperature is not amenable to direct
measure.

(iii) The gradients of the gasdynamic quantities decrease markedly with increasing
rarefaction and mean free path, on going from shock wave A to shock wave E. The
larger the mean free path, as in shock wave E, the less determinant is the choice of
computational grid. On the other hand, shock wave A is particularly sensitive to the
density and type of computational grid.

(iv) Parallel implementation of the QGD and QGDR equations in this problem has
proved highly advantageous.

(v) The physical reality of the recirculation vortex formed immediately downstream
from the shock wave associated with axisymmetric hypersonic expansions cannot
be proved unambiguously from the present experimental data, nor from the QGD
or QGDR numerical results. In some cases the numerical vortex disappears when
dense enough grids are employed in the calculation. The vortex must so far remain
conjectural in our opinion.

(vi) Linear Raman spectroscopy proves to be an instrumental technique very well
suited for the quantitative study of normal shock waves. For shock waves spanning
a wide range of their gasdynamic quantities it can provide
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(a) sampling at very high spatial resolution (few µm)
(b) absolute densities (±10%) within several orders of magnitude
(c) rotational temperatures (±5%) nearly unlimited in range.

This work was supported by the Russian Foundation for Basic Research, grant
N 01-01-00061, and by the Spanish DGESIC (MEC), research project PB97-1203.
Thanks are due to the referees for the valuable comments towards the improvement
of this paper.

Appendix A. The r, z-formulation
The present QGD and QGDR equations in the r, z formulation differ from the

version given by Maté et al. (2001). The NS dissipative terms, and the additional
dissipative terms, are written here separately. For brevity we just report the r, z-
formulation for the QGD system. In the case of r, z geometry equations (1)–(3) take
the form
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The expressions for the mass flux vector, the heat flux vector, and the shear stress
tensor are:
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It should be mentioned that in the r, z formulation the flow quantities are uniform
on azimutal angle ϕ, with vanishing derivatives on it. However, the stress tensor
component Πϕϕ is independent of ϕ, and is non-zero even in the r, z formulation.

Appendix B. Numerical realization
For the numerical realization the system (A 1) – (A 4) is rewritten in the vector-form:
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D

J z
D(E + p)/ρ


, G =




0

Π
ϕϕ
NS

0

0


, GD =




0

Π
ϕϕ
D

0

0


,

(B 3)
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W =




0

Πrr
NS

Πrz
NS

urΠ
rr
NS + uzΠ

rz
NS − qr

NS


 , WD =




0

Πrr
D

Πrz
D

urΠ
rr
D + uzΠ

rz
D − qr

D


 , (B 4)

V =




0

Πzr
NS

Πzz
NS

urΠ
zr
NS + uzΠ

zz
NS − qz

NS


 , VD =




0

Πzr
D

Πzz
D

urΠ
zr
D + uzΠ

zz
D − qz

D


 . (B 5)

As mentioned in § 4, in order to stabilize the numerical algorithm the relaxation time
τ is replaced by τ + τeff in several dissipative terms of the QGD and QGDR systems.
In particular, in the QGD system this procedure is employed for the JD and qD

vectors, and for the ΠD and ΠNS tensors as follows: the replacement is made only in
the terms of the system (A 1) – (A 4) obtained by taking the derivatives of JD , qD ,
ΠD , and ΠNS , that would include second derivatives in the r and z coordinates. The
corresponding terms for the JD and qD vectors, and for the ΠD tensor, are

∂

∂z
(τ + τeff)

∂f

∂z
,

∂

∂z
(τ + τeff)g

∂g

∂z
,

1

r

∂

∂r
(τ + τeff)

∂

∂r
(rf ),

1

r

∂

∂r
(τ + τeff)g

∂

∂r
(rg),

1

r

∂

∂r
(τ + τeff)rg

∂g

∂r
,

∂

∂r
r(τ + τeff)

∂g

∂r
,

1

r
(τ + τeff)g

∂g

∂r
,

1

r2
(τ + τeff)g

∂

∂r
(rg),

where f and g are the functions of the gasdynamic parameters f = f (ρ, ur, uz, p, E),
and g = g(ur, uz, p). For the ΠNS tensor the corresponding terms are

∂

∂z
(µ + τeffp)

∂f

∂z
,

∂

∂z
(µ + τeffp)g

∂g

∂z
,

1

r

∂

∂r
(µ + τeffp)g

∂

∂r
(rg),

1

r

∂

∂r
(µ + τeffp)rg

∂g

∂r
.

The terms proportional to τeff are combined together in the vector form

FW τeff
= r




−J r
D

−urJ
r
D + Πrr

D + Πrr
NS

−uzJ
r
D + Πrz

D

−J r
D(E + p)/ρ + urΠ

rr
D + uzΠ

rz
D − qr

D + urΠ
rr
NS


 , (B 6)

EV τeff
=




−J z
D

−urJ
z
D + Πzr

D

−uzJ
z
D + Πzz

D + Πzz
NS

−J z
D(E + p)/ρ + urΠ

zr
D + uzΠ

zz
D − qz

D + uzΠ
zz
NS


 , (B 7)
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GGτeff
=




0

Π
ϕϕ
D + Π

ϕϕ
NS

0

0


 , (B 8)

and finally the system (B 1) is rewritten in the form

∂U
∂t

+
1

r

∂(r F)

∂r
+

∂ F1

∂r
+

∂ E
∂z

=
1

r

∂(rW )

∂r
+

∂V
∂z

− G
r

+
1

r

∂

∂r
r(−FD + WD)

+
∂

∂z
(−ED + VD) − GD

r
+

1

r

∂(rW Fτeff
)

∂r
+

∂(V Eτeff
)

∂z
−

GGτeff

r
. (B 9)

The implementation of the ‘effective’ relaxation time τeff for the stabilization of
numerical solution is analogous to the QGD-vector-splitting method developed and
studied by Graur (2001), and used for the solution of the QGD equations.
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